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Predicting the prognosis of MCI patients 
using longitudinal MRI data 

Fusun Er, Dionysis Goularas and the Alzheimer's Disease Neuroimaging Initiative 

Abstract—The aim of this study is to develop a computer-aided diagnosis system with a deep-learning approach for distinguishing 
“Mild Cognitive Impairment (MCI) due to Alzheimer’s Disease (AD)” patients among a list of MCI patients. In this system we are 
using the power of longitudinal data extracted from magnetic resonance (MR). For this work, a total of 294 MCI patients were 
selected from the ADNI database. Among them, 125 patients developed AD during their follow-up and the rest remained stable. 
The proposed computer-aided diagnosis system (CAD) attempts to identify brain regions that are significant for the prediction of 
developing AD. The longitudinal data were constructed using a 3D Jacobian-based method aiming to track the brain differences 
between two consecutive follow-ups. The proposed CAD system distinguishes MCI patients who developed AD from those who 
remained stable with an accuracy of 87.2%. Moreover, it does not depend on data acquired by invasive methods or cognitive 
tests. This work demonstrates that the use of data in different time periods contains information that is beneficial for prognosis 
prediction purposes that outperform similar methods and are slightly inferior only to those systems that use invasive methods or 
neuropsychological tests. 

Index Terms— Convolutional Neural Network, Alzheimer’s disease, Voxel-based Morphometry, Pooling 

1 INTRODUCTION

LZHEIMER’S disease (AD) is a progressive 
neurodegenerative disease that most frequently 
occurs in the elderly population. Neurodegeneration 

is initially characterized by synaptic damage and followed 
by neuronal loss [1]. In the course of time, as a result of 
neurodegeneration, brain tissue shrinks in volume, thus 
causing cognitive impairment. Mild Cognitive 
Impairment (MCI) is a clinical diagnosis indicating 
abnormal decline in cognitive abilities more than expected 
and is been associated with a significant risk of developing 
AD. MCI is in many cases characterized by a decline in 
memory, and unlike AD, MCI patients may remain stable 
for years in terms of memory condition. However, 
neurological studies showed that some individuals with 
MCI develop AD [2]. Although MCI and AD are distinct 
disorders, because of the relation between them, it has 
been of great interest to predict the risk of developing AD 
for MCI patients. 

Since AD shares many clinical symptoms with MCI [3], 
the existence of reliable biomarkers plays an important 
role in the diagnosis of “MCI due to AD” [4,5]. Previous 
researches have defined several biomarkers based on 
neuroimaging [5] (i.e., structural magnetic resonance 
imaging (MRI), functional MRI, fluorodeoxyglucose - 
positron emission tomography (FDG-PET) imaging), 
cerebrospinal fluid (CSF) protein test [6] and blood test 
[7]. Although several modalities are being used to develop 
biomarkers for dementias, it should be considered 
preferable to use non-invasive methods [8] because ethical 
issues may arise when considering the use of them in the 
diagnosis and treatment of a patient with impaired mental 

function [9]. This fact oriented some researchers towards 
studies aiming to discover and use less invasive 
biomarkers for patients having dementias [10]. 

Blood-based biomarkers are considered as a minimally 
invasive option compared to the CSF-based biomarkers 
acquired by invasive methods, thus presenting a higher 
risk for patients [11]. However, MRI is a non-invasive 
method for acquiring images representing the morphology 
of brain structures in high resolution [12]. By 
consequence, structural MRI became the most studied 
modality for neurodegenerative diseases. 

In neurodegenerative diseases, structural MRI-based 
biomarkers reflect the structural changes in grey and white 
matter tissue. It has been proven that MCI patients have 
significantly more atrophy than normal elderly people but 
less than AD patients [5]. More specifically, hippocampal 
and entorhinal atrophy plays an important role in 
designing biomarkers for “MCI due to AD” patients [13]. 
However, detecting such slight changes is most of the 
times hard to be done by physicians only by visual 
assessment [14]. By consequence, the use of 
computational models for the definition of biomarkers can 
contribute significantly to the prognosis prediction for 
MCI patients [15]. 

In computer-aided diagnosis studies, various deep 
learning based solutions are proposed showing promising 
results in the diagnosis of several diseases (i.e., breast 
cancer [16], liver cancer [17] and gliomas [18]). Cheng et 
al. utilized a stacked denoising autoencoder based deep 
learning schema for breast lesion classification with 
89.6% accuracy in ultrasound images [16]. A previous 
study showed that deep convolutional neural network 
models give promising results in the segmentation of liver 
lesions on CT images [17]. A convolutional neural 
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network  achieved an accuracy of 78.7% for predicting the 
prognosis of MCI patients [19]. Finally, in another study, 
the use of a deep convolutional neural model reached an 
accuracy of 96% for differentiating glioblastoma 
multiforme (Grade IV) from low grade gliomas (Grade II 
and III) [18]. 

The present study proposes a CAD model that utilizes 
a deep learning approach with an autoencoder and a 
convolutional neural network for an early prognosis 
prediction of MCI patients running a risk of developing 
AD.  The system takes advantage of a longitudinal 
analysis with a 3D Jacobian-based method by using only 
non-invasive structural MRI of two different time periods, 
the baseline and a 12 months later follow-up. In summary, 
this method takes the differences between the two MRI 
volumes and generates a new one, called jacobian volume. 
Based on these new volumes, a voxel-based morphometric 
analysis is implemented for detecting the regions of 
interest that are statistically important between the MCI-
patients who remained stable and those who developed 
AD. Then, these regions are separated and mapped 
according to individual brain atlas regions in order to be 
used for the creation of filters during the training of the 
autoencoder and the pooling process for the CNN. 

Finally, the resulted features extracted from the CNN 
are processed in an SVM classifier for the prognosis 
prediction yielding an accuracy of 87.2% (sensitivity of 
92.4% and specificity of 80.4%). Fig. 1 illustrates the 
steps of the proposed system. In the following section, the 
above steps and methods will be described analytically. 

2 RELATED WORK 
Several longitudinal neuroimaging studies explored the 
structural changes of the brain associated with a disease or 
a condition through a particular period of time. First-
episode schizophrenia [20], prion disease [21], Friedreich 
ataxia [22], peripheral vestibular dysfunction following 
vestibular neuritis [23] and chronic fatigue syndrome [24] 
are some of the diseases that have been investigated by 
longitudinal analysis.  

A number of pre-processing procedures and analysis of 
longitudinal data were proposed and validated. Tensor-
based morphometry (TBM) is one of the widely used 
longitudinal approaches that are based on the structural 
deformation patterns of MRI data. TBM is originally 
proposed by Kipps et al. [25] and applied in many areas 
like first-episode schizophrenia [20,26], primary 
progressive multiple sclerosis [27] and logopenic variant 
of primary progressive aphasia [28]. Basically, TBM 
utilizes the deformation fields obtained during the 
registration procedure of images acquired in two different 
time periods and the implementation in the literature may 
slightly differ: in some studies, instead of registering two 
different time periods images, an average image of these 

two images is calculated to be used as an registration 
template [21,27]. In order to increase the accuracy of inter-
subject alignment for the normalization procedure, 
DARTEL normalization is applied [23,26,27]. 

Several recent CAD studies attempted to identify MCI 
patients who will develop AD. In these works, different 
kinds of data were utilized (e.g. magnetic resonance 
imaging (MRI), clinical, neuropsychological and PET 
scan data) that were either cross-sectional or longitudinal. 
Longitudinal data can vary from study to study: In the 
work of Ardekani et al. [29], a measure of the hippocampal 
volumetric integrity (HVI) from a baseline and one-year 
follow-up structural MRI was utilised together with 
cognitive tests, genetic and demographic information. 
Minhas et al. [30] used longitudinal MRI derived 
measures together with neuropsychological tests for the 
purpose of differentiating converter MCI to non-converter 
MCI patients. In another work, Nazeri et al. [31] utilized 
plasma proteins measurements (a minimal invasive 
method) together with tensor based morphometry (TBM) 
for MRI data to detect changes over time.  

The scope of this study aims to contribute to this field 
of research by proposing a CAD system based on 
longitudinal data and a CAD system for the prediction 
prognosis of MCI patients that can eventually develop 
AD. In the next section the subjects and methods of the 
CAD system will be detailed. 

3 SUBJECTS AND METHODS 

3.1. Subjects 
The data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI 
was launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers and clinical 
and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). 

Ethical Statement: All procedures performed in studies 
involving the ADNI participants were carried out in 
accordance with the Helsinki declaration. The ADNI study 
was approved by the Institutional Review Boards of all of 
the participating institutions. Informed written consent 
was obtained from all participants and their legal 
representatives at each site prior to the collection of 
clinical, genetic, and imaging data. 

In order to prevent double-dipping [33], for this study, 
three different datasets are chosen, composed of structural 
MR images and obtained from different patients. The first 
one (Dataset-I) is used for a voxel-based morphometric 
(VBM) analysis in order to create a SPM-F contrast map 
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(SPM: Statistical Parametric Mapping) of the important 
longitudinal changes between two groups of patients, 
those that will develop AD and those that will remain 
stable. This dataset contains 126 MCI patients with a 
single baseline and a single follow-up MRI exam for each 
of them. It is retrospectively known that 74 patients among 
them remained stable in MCI state and the rest (52 
patients) converted diagnostically to AD at some point 
after their follow-up examination. The second one 
(Dataset-II) is used to generate a set of filters that will be 
used in a Computer-Aided Diagnosis model. This dataset 
has a total of 51 ADNI patients where each patient was 
diagnosed with MCI and has a baseline and a 12-months 
follow-up MRI exam. Among them, 22 patients who 
developed AD were grouped as Converted-MCI (C-MCI) 
and the 29 patients who remained stable in MCI were 
grouped as Non-Converted-MCI (NC-MCI). Similarly, 
the third dataset (Dataset-III) contains a total of 117 MCI 
patients, where 51 of them were in the C-MCI group and 
the remaining patients were in the NC-MCI group. Table 
I presents the use of each dataset. The average(±standard 
deviation) of conversion times after baseline (in months) 
of all total of 125 patients of the C-MCI groups of the 
Dateset-I, Dataset-II and Dataset-III  were  9.57±2.97, 
28.36±9.29 and 30.94±16.55, respectively, with an overall 
value of 21.6±15.27. The data having higher conversion 
times were reserved for training (Dataset-II) and test 
(Dataset-III) datasets. 

It is worth to mention that the patients from the ADNI 
dataset are diagnosed with MCI after an evaluation based 
on multiple criteria. More particularly, according to 
information given by the ADNI group, patients with mini-
mental state examination (MMSE) scores between 24-30 
(inclusive), having a memory complaint, an objective 
memory loss measured by education adjusted scores on 
Wechsler Memory Scale Logical Memory II, a Clinical 
Dementia Rating (CDR) scale of 0.5, absence of 
significant levels of impairment in other cognitive 
domains, essentially preserved activities of daily living, 
and an absence of dementia, are grouped as MCI. 

The pre-processed images of the selected baseline and 
one-year follow-up T1-weigthed 3-Tesla MRI scans were 
downloaded from the ADNI data archive, whih are 
acquired with a magnetization-prepared rapid acquisition 
gradient echo (MP-RAGE) sequence with data access 
permission from the ADNI. The ADNI uses several image 
pre-processing correction steps to produce the pre-
processed images of the MRIs (i.e., gradwarp, B1 
correction, and N3 specification) in order to reduce the 
risk of scanner bias and the effect of heterogeneity of 
protocols [32]. 

3.2. Statistical Description of Datasets 
Descriptive statistical methods were used to analyse the 

demographic and clinical data of the groups taken from 

the baseline examination, in terms of age in years, score 
of mini-mental state examination (MMSE) test, years of 
education and gender. The age, years of education and 
MMSE score were provided as mean (standard deviation) 
and minimum-maximum value range for each group of 
patients. Further, the gender information was provided as 
a categorical variable where “M” stands for the number of 
male and “F” stands for the number of female patients. A 
Wilcoxon rank sum test was implemented to compare the 
medians of age, years of education and MMSE scores of 
the two groups. The existence of significant difference 
between the groups was assessed by a Pearson’s chi-
square test. A further longitudinal statistical analysis was 
performed to compare the MMSE scores at the baseline 
and the 12-months follow-up exams for each group using 
one-tailed paired student t-test. All statistical tests of 
descriptive statistics were assessed with a significance 
level of 0.01. The statistical analysis was performed using 
Statistical Toolbox 9.1 of Matlab R2014b (Matlab, The 
MathWorks, Inc., Natick, Massachusetts, USA). 
 The descriptive statistics and statistical comparison of 
the NC-MCI and C-MCI groups in gender, age, years of 
education and MMSE score at baseline are shown in Table 
II for the Dataset-I, Dataset-II and Dataset-III. On all 
datasets, the statistical analysis showed that the three 
groups did not differ significantly in gender, age and years 
of education at the significance level of 0.01. On the other 
hand, the median of MMSE scores of the NC-MCI 
patients were significantly higher than those of the C-MCI 
patients (p<0.01) on all three datasets. 

No significant difference in MMSE score between the 
baseline and the 12-months follow-up examination was 
found for the NC-MCI group of the Dataset-I (t-value: -
0.94; df: 73; p-value = 0.34), the Dataset-II (t-value:1.27; 
df: 28; p-value = 0.21) and the Dataset-III (t-value:2.29; 
df: 65; p-value =0.02). On the other hand, the mean 
MMSE score at the 12-months follow-up examination of 
the converted MCI group was significantly reduced at the 
Dataset-I (t-value: 05.66; df: 51; p-value < 0.01), the 
Dataset-II (t-value: 3.47; df: 21; p-value <0.01) and the 
Dataset-III (t-value: 3.6; df: 50; p-value <0.01).  

The average number of months from baseline to the 
month that conversion occurred are 10 months, 28 months, 
31 months among C-MCI group of the Dataset-I, the 
Dataset-II, the Dataset-III, respectively. As we can 
observe, for the two groups (Dataset-II, the Dataset-III), 
the patients developed AD more than one year after the 
baseline. In order to increase the data size, for the Dataset-
I, we included some patients who developed AD in almost 
less than a year after the baseline. 

3.3. Methods 
In this study, we used the Statistical Parametric Mapping 
(SPM) software version 12 (SPM12) built in Matlab 
(Wellcome Department of Cognitive Neurology, Institute 
of Neurology, Queen Square, London) [34] and the 
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Computational Anatomy Toolbox (CAT) software version 
12 (CAT12) to pre-process the acquired scans. SPM is a 
statistical method invented by Karl Friston to test 
hypotheses about brain imaging data [35] and CAT is a 
freely available toolbox developed as an extension to SPM 
for incorporating morphometric neuroimaging methods 
like voxel-based morphometry (VBM), surface-based 
morphometry (SBM), deformation-based morphometry 
(DBM), and region-of-interest (ROI)-based or label-based 
morphometry. 

The proposed system aims to predict whether a 
particular MCI patient will remain stable in the diagnosis 
of MCI or will develop AD. It comprises of an 
autoencoder, a convolutional neural network and a support 
vector machines classifier. 

1)  Longitudinal pre-processing pipeline 
The longitudinal pre-processing phase comprises of 
the following steps: the creation of two normalized 
volumes from the scans belonging to the baseline and 
the follow-up examination, the creation of a 3D 
jacobian determinant volume and a volume 
normalization and dilation procedure. 
 
a) Generation of normalized volumes  
The baseline and the 12-months follow-up normalized 
volumes were created from the patients’ MR images 
using SPM12 toolbox of MATLAB. In total, we 
created 294 (all three datasets) modulated normalized 
volumes. 

 
b) Generation of a 3D jacobian determinant volume 
In this step, we compute a 3D jacobian determinant 
volume of longitudinal changes for each patient using 
their baseline and 12-months follow-up exam. For the 
rest of this article, this volume will be named as 
“jacobian volume”. In summary, we attempt to detect 
the differences between the baseline and the 12-
months follow-up.  

The jacobian volumes are generated as defined in 
[53]. Firstly, the displacement fields from co-
registered baseline to follow-up volumes were 
calculated followed by the estimation of directional 
gradients 𝑢 = (𝑢$, 𝑢&, 𝑢'). Then, the determinant, 𝐽*, 
of the Jacobian matrix at each voxel position (x, y, z) 
is defined as in Eq.1.  
 

𝐽*(𝑥, 𝑦, 𝑧) = .
.

*/0($,&,')
*$
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Fig. 2 presents one particular slice of the generated 

displacement fields from the baseline to the 
corresponding 12-months follow-up, belonging to a 

convert patient (a) and a stable patient (b).  
 

c) Volume normalization and dilation process 
Each jacobian volume has values in the range [-

4000, +4000]. A normalization procedure using a 
sigmoid function based on the previous range was 
carried out  such that the jacobian volume values were 
mapped in the range [0, 1]. Then, a dilation operation 
with a spherical structural element of radius equal to 3 
voxels was applied to the jacobian volumes. The 
dilation operation allowed to remove small dark spots 
because they were filled with the surrounding intensity 
values. It helped to enlarge clusters within the SPM-F 
contrast map that includes statistically significantly 
different voxels between two patient groups. 

 

2) Voxel-based morphometric data analysis 
In order to extract the differences between the groups 
of NC-MCI and C-MCI patients, a voxel-based 
morphometric analysis was performed on their 
normalized and dilated jacobian volumes of the 
Dataset-I. For this purpose, a second level analysis 
between subjects including also gender, age, and total 
intracranial volume (TIV) as additional covariates was 
designed using SPM12 to specify statistically 
significantly different voxel positions between the two 
groups. TIV was calculated as the sum of the 
normalized modulated tissue segments, the grey 
matter (GM), the white matter (WM) and the  
cerebrospinal fluid (CSF) using “Estimate TIV” 
implementation of the CAT12 toolbox. Gender was 
described as a categorical binary variable where zero 
indicates a male and one indicates a female patient. 
Finally, the age parameter was rounded to the nearest 
year. It is generally recommended to use all these three 
covariates together in order to acquire the optimal 
detection of volume loss [36]. 

After the VBM analysis, a SPM-F contrast map of 
the changes was obtained with an uncorrected p-value 
threshold of 0.05, an extent threshold of 400 and an F-
contrast of parameters. During the experimental tests, 
we observed that when we were associating the 
volumes of interest with anatomical regions of the 
brain, the system produced better results in terms of 
accuracy. By consequence, an atlas-based region-of-
interest (ROI) analysis was generated on the SPM-F 
contrast map using the Automated Anatomical 
Labeling (AAL) atlas. In fig. 3, we can see an 
illustration of associating the regions of interest 
according to particular regions of the brain based on 
the AAL atlas (45th slices are demonstrated). As it will 
be described later, for every volume region only its 
mean value will be taken in consideration. These 
values are representatives of the differences occurring 
in individual anatomical regions only, and not to a 
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combination of one or more regions. In total, 75 
regions were generated based on AAL atlas. As the 
brain has 116 anatomical regions, 41 of them were not 
represented, as they did not present a statistically 
significantly difference for the progression of AD. 
 

3) Autoencoder 
An autoencoder is an unsupervised neural network to 
learn efficient data encoding that are trained to 
reconstruct themselves. The hidden layer outputs of a 
trained autoencoder provide the encoded data of the 
input and the weights connected to each hidden layer 
compose a convolutional filter. Finally, a set of 
convolutional filters are produced with a number equal 
to the number of hidden layer nodes. 
 The purpose of the autoencoder is to generate filters 
from patches of size 7×7×7 that are extracted from the 
regions of interest. These filters can be considered as 
an abstraction or a general representation of the 
features included in the regions of interest. During the 
training process, we used 51.000 patches from the 
Dataset-II to train an auto encoder with three hidden 
layers (with 64, 27 and 8 hidden units, respectively) as 
described in fig. 4. 

 

4) Convolutional neural network 
A convolutional neural network (CNN) is a particular 
kind of a feed-forward neural network that is used to 
learn latent representation of grid-structured data, like 
images or time-series data. CNN was originally 
proposed by LeCun et al. [37] for the recognition of 
handwritten zip code. Nowadays, it is widely used in 
neuroimaging studies due to the fact that 
neuroimaging data are generally acquired and 
analysed in image series. A CNN architecture can be 
formed in a variety of ways, but the simplest one is 
composed of a set of convolutional and 
subsampling/pooling layers and optionally a 
supervised classifier as a final layer. In this study, the 
proposed CNN comprises of an input, three 
convolutional layers, and a pooling layer for acquiring 
the prognostic features that will be used later as an 
input for the SVM classifier. 

Fig. 5 presents the CNN architecture that generates 
a vector of prognostic features for a patient. After the 
acquisition of patients’ jacobian volumes, we apply the 
following convolution procedure: for every patient, its 
jacobian volume is convolved with three convolutional 
layers using the three level filters (64, 27 and 8) 
calculated before with the auto encoder architecture. 
As mentioned above, these filters may be considered 
as an abstraction of the characteristics indicating if an 
AD conversion will happen or not. For a particular 
brain volume, the convolution is performed with each 

slice of the volume. In total, eight new brain volumes 
are generated (named as “feature maps”). Then, for 
each of them, using the mapped SPM-F contrast map, 
75 volumes of interest are determined based on 
Anatomical atlas. These regions, as explained before, 
indicate the parts of individual brain anatomical 
regions that are considered statistically important after 
performing the VBM analysis. The next step is to 
calculate the mean value of each volume of interest. In 
total, 75 values are generated for each feature map 
named as “feature vector”. As we have eight 
convolved brain volumes (or eight feature maps), in 
the end, a total of 600 values are produced named as 
“prognostic features”. 
 

5) Support vector machine classifier 
As described above, for every patient a vector of 
prognostic features is calculated. Then, for the 
prognosis prediction a support vector machine (SVM) 
with a linear kernel classifier is chosen because it 
produces the best results compared to other classifiers 
as it will be detailed later. 
 

6) Recursive feature elimination 
A further evaluation was performed. We applied a 
support vector machine-based recursive feature 
elimination method (SVM-RFE) [38] in order to select 
the most significant features among the prognostic 
features. This method is based on a feature scoring 
procedure indicating the contribution of each feature 
to the construction of the SVM hyperplane during the 
training of the SVM classifier. For this purpose, 
“SVMAttributeEval” implementation of the Weka 
software [39] is utilized. 

 

7) Classification performance metrics 
Classification performances were measured in terms 
of accuracy (ACC), sensitivity (TPR), specificity 
(SPC), positive predictive value (PPV) and negative 
predictive value (NPV). The accuracy is defined as the 
percentage of all correct identifications among the 
whole population (2). The sensitivity measures the 
percentage of correctly identified C-MCI patients 
among the C-MCI groups (3), and similarly, the 
specificity measures the percentage of correctly 
identified NC-MCI patients among the NC-MCI 
groups (4). Furthermore, the PPV shows the 
percentage of correctly identified C-MCI patients to 
the number of patients predicted as in the C-MCI 
group (5). Finally, the NPV is the percentage of 
correctly identified NC-MCI patients to the total 
number of NC-MCI patients (6). Confidence intervals 
of repeated measurements are calculated as in (7). 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) (2) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑁) (3) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁	/	(𝐹𝑃 + 𝑇𝑁) (4) 

 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑉𝑎𝑙𝑢𝑒	 = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑃) (5) 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) (6) 

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙	 = 	 𝑥̅ 	± ((z ∗ 	σ)/(√𝑛))	 
 

(7) 

 
In the above equations, TP (true positives) and TN (true 
negatives) are the number of correctly classified C-MCI 
and NC-MCI patients respectively. Finally, FP (false 
positives) and FN (false negatives) are the numbers of 
incorrectly classified patients. 

 

4 RESULTS 
4.1. VBM Analysis 
Fig. 6 shows the SPM-F contrast map of statistically 
significantly different voxels between the two groups with 
an uncorrected p-value threshold of 0.05 and an extent 
threshold of 400 (F=3.92).  

The SPM-F contrast map defines a total of 15410 
significant voxels that have higher F-values than the 
selected threshold value. A total of 938 voxels of the SPM-
F contrast map are located in the left middle temporal 
gyrus. Similarly, some other prevailing anatomical regions 
are left superior temporal gyrus (n=864), right superior 
temporal gyrus (n=775), left postcentral gyrus (n=606) 
and right middle temporal gyrus (n=604). 

4.2. Evaluation of the CAD System 
In this study two experiments were designed to assess the 
predictive power of the CAD system based on two 
different patch sizes: 5×5×5 and 7×7×7. Smaller or 
bigger patch sizes were also tested but the results were not 
satisfactory. In these experiments, an autoencoder with 
three layers was trained on randomly selected patches of 
SPM-F Contrast Map voxels with three hidden layers of 
64, 27 and 8 hidden units, respectively.  

The predictive power of the prognostic features was 
tested with three different classifications methods using 
the Weka software [39]: a support vector machine 
classifier (SVM) using a linear kernel, a linear 
discriminant analysis (LDA) and a multilayer perceptron 
(MLP) using a 10-fold cross-validation (see Table III). In 
this method the dataset is divided in ten parts and the 
classifier is trained ten times where for each time the 
current part among the nine is used as a test set and the 
rest as a training set. Next, we applied a SVM-RFE 
procedure, and similar to the previous procedure, the most 
significant 120 features were selected. 

The results are given in Table III in terms of sensitivity, 
specificity, accuracy, precision and negative predictive 

value for different size of patches and classifiers for all 
prognostic features based on the AAL atlas. Furthermore, 
Table IV shows SVM-RFE procedure based on AAL atlas. 

The best performance was achieved in the 
configuration using patches of size 7 ×7×7 and a subset 
of selected features, where an accuracy of 87.2%, a 
sensitivity of 92.4% and a specificity of 80.4% was 
achieved.. 

 

4.3. Evaluation of the jacobian volume 
In order to measure the performance of the jacobian 
volume, we compared the results of the CAD system for 
the best configuration in terms of patch size for the 
baseline only and the follow up exam only.  

As shown in Table V, the jacobian volume performed 
better than the baseline or the follow up thus proving that 
the differences between the two exams contain important 
information for the prediction prognosis on before and 
after SVM-RFE feature selection procedure. 

4.4. Assessing the SPM-F Contrast Map 
In order to show the efficiency of the SPM-F contrast map 
(VBM mask), we performed several tests using patches of 
size 7 ×7×7, with or without the VBM mask. Table VI 
presents the test results that the performance of the best 
case decreased from 65% to 62.4% in accuracy (with a 
dramatic decrease in SPC from 59.9 to 43.1%) without 
using VBM mask. 
 

4.5. Comparison with Other CAD Systems 
The proposed CAD system was compared with similar 
systems that present one or more common characteristics 
such as the use of longitudinal data or not, data from ADNI 
or another database, and the use of invasive minimal 
invasive or non-invasive methods. Table VII presents the 
most successful ones in terms of accuracy, sensitivity and 
specificity. Devanand et al. [40] proposed a non-ADNI 
study with high accuracy results (94.9%) but with 
relatively low specificity (85.2%) combining MRI, 
clinical and cognition data obtained in the baseline. Green 
et al. [41] proposed a CAD system with a very high 
accuracy of 94.4% (94.7% sensitivity, 94.1% specificity) 
based on EEG and CSF data (an invasive method) of a 
non-ADNI dataset. In both studies, the number of C-MCI 
patients was relatively small. 

Among the studies that utilized the ADNI dataset, the 
study of Nazeri et al. achieved an accuracy of 93.5% using 
longitudinal data of the MRI and plasma protein data [31] 
which is a minimal invasive method. The study of Douaut 
et al. was interesting due to the employment of Difussion 
Tensor Imaging (DTI) data [42]. When comparing our 
study in terms of ADNI dataset and the use of invasive 
methods or additional tests, the closest among the studies 
of Table VII is the one of Minhas et al. [30] which has a 
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similar success rates (accuracy 89.7%) and still uses 
cognitive tests. Our approach achieved high success rates 
with an accuracy of 87.2%, a sensitivity of 92.4% and a 
specificity of 80.4%. 

As a general observation, the current study presents 
lower results when compared with similar systems that use 
invasive methods but similar results when compared with 
studies using clinical and cognition tests. Moreover, it 
performed much better when compared with systems 
where no additional tests or invasive methods where 
utilized.  

 

5 DISCUSSION 
In neuroimaging, the performance of longitudinal data 

over cross sectional data has been validated by numerous 
studies: Xu et al. [48] demonstrated that for the detection 
of brain imaging phenotypes, longitudinal data 
outperform cross-sectional data. For neurodegenerative 
diseases, longitudinal ADNI studies [29–31] performed 
better than the cross-sectional studies [7,46,47]. 
According to the above observations, the exploration of 
longitudinal data and the research for new methods in 
order to extract information from them could be beneficial 
for the prognosis and treatment of dementias. Within this 
scope, this work attempted to contribute to the information 
extraction of this type of data by proposing a method 
aiming to estimate the differences between two MRI 
volume exams based on the generation of a 3D jacobian 
volume. This method was applied in a CAD system and 
the results showed that the information extracted by this 
process contributed to the success of this approach when 
used in combination with VBM, anatomical brain atlas 
and deep learning techniques.  

In comparison with other systems, the acquired results 
were higher from all systems that use only MRI data, they 
were lower only with those that utilized invasive methods 
like CSF tests [41,42], minimal invasive methods like 
plasma [31] and they were similar with studies that were 
using additional cognitive tests [30]. In particular, the CSF 
test is one of the diagnostic methods for brain or spine 
related diseases. During this test, a sample of 
cerebrospinal fluid is removed in a procedure called 
“Lumbar puncture” often performed in anaesthesia. The 
CSF sampling is performed by inserting a needle into the 
spinal canal where several trials may be needed with 
different sizes of needles [49] thus elevating the risk of 
back pain and trauma. In addition, lumbar puncture may 
have some post-operation complications like cerebral and 
spinal herniation post lumbar puncture headache [50]. 
From that point of view, the proposed method presents a 
significant advantage as it does not need invasive 
procedures which may be uncomfortable, inappropriate or 
tests that sometimes are difficult to be executed by the 

elderly people [51].  
Using a system for the prognostic diagnosis of 

Alzheimer’s disease in MCI patients is vital to start the 
treatment immediately using preventive or therapeutic 
medicines for slowing down the progression to AD or 
treating the symptoms of dementia [52]. However, the 
benefit of medication treatment for preventive purposes 
should be considered carefully in a geriatric population 
due to the comorbidities and side-effects of drugs. The use 
of preventive medication in MCI patients who actually 
will not develop AD may expose those patients to the 
unnecessary burden of medication. For this reason, 
identifying MCI patients who are most likely to convert to 
AD with a high accuracy is essential in terms of 
preventing unnecessary medication-related problems. 

6 CONCLUSION 
To summarize, we proposed a CAD system for MCI 
patients to predict their prognosis based on longitudinal 
data from T1-weighted structural brain MR images data 
only, without using invasive methods or cognitive tests. 
The longitudinal data were processed with the generation 
of a 3D jacobian volume and the resulted MRI volumes 
were used as an input for a system comprising a VBM 
analysis, an autoencoder architecture, a convolutional 
neural network and an atlas-based pooling method. 
Finally, the resulted features were directed to an SVM 
classifier for the prognosis prediction process. The CAD 
system yielded a 87.2% accuracy, thus contributing to the 
efforts towards the creation of a prognosis prediction 
system which will decide about the type of treatment of 
MCI patients without necessarily involving the use of 
invasive methods or cognitive tests. At the same time, the 
limitation of this method is that it gives results that are 
slightly inferior of studies that are using additional tests. 
As a future direction, we would like to further improve 
this method in order to include different prognostic groups 
in an effort to investigate if it is possible with this 
methodology to predict other types of dementias in earlier 
stages.  
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